\(\int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx\) [355]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 88 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {\cos (e+f x) (3+3 \sin (e+f x))^{3/2}}{6 f (c-c \sin (e+f x))^{7/2}}+\frac {\cos (e+f x) (3+3 \sin (e+f x))^{3/2}}{24 c f (c-c \sin (e+f x))^{5/2}} \]

[Out]

1/6*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/f/(c-c*sin(f*x+e))^(7/2)+1/24*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/c/f/(c-c
*sin(f*x+e))^(5/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2822, 2821} \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {\cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{24 c f (c-c \sin (e+f x))^{5/2}}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{6 f (c-c \sin (e+f x))^{7/2}} \]

[In]

Int[(a + a*Sin[e + f*x])^(3/2)/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(6*f*(c - c*Sin[e + f*x])^(7/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*x]
)^(3/2))/(24*c*f*(c - c*Sin[e + f*x])^(5/2))

Rule 2821

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rule 2822

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Dist[(m + n + 1)/(a*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m
, 1] ||  !SumSimplerQ[n, 1])

Rubi steps \begin{align*} \text {integral}& = \frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{6 f (c-c \sin (e+f x))^{7/2}}+\frac {\int \frac {(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{5/2}} \, dx}{6 c} \\ & = \frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{6 f (c-c \sin (e+f x))^{7/2}}+\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{24 c f (c-c \sin (e+f x))^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.58 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.23 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {\sqrt {3} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (1+\sin (e+f x))^{3/2} (1+3 \sin (e+f x))}{2 c^3 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 (-1+\sin (e+f x))^3 \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(3 + 3*Sin[e + f*x])^(3/2)/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

-1/2*(Sqrt[3]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(1 + Sin[e + f*x])^(3/2)*(1 + 3*Sin[e + f*x]))/(c^3*f*(Cos
[(e + f*x)/2] + Sin[(e + f*x)/2])^3*(-1 + Sin[e + f*x])^3*Sqrt[c - c*Sin[e + f*x]])

Maple [A] (verified)

Time = 3.14 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.06

method result size
default \(\frac {\sqrt {a \left (\sin \left (f x +e \right )+1\right )}\, a \left (\sin \left (f x +e \right ) \cos \left (f x +e \right )-3 \cos \left (f x +e \right )-7 \tan \left (f x +e \right )+3 \sec \left (f x +e \right )\right )}{6 f \left (2 \sin \left (f x +e \right )+\cos ^{2}\left (f x +e \right )-2\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{3}}\) \(93\)

[In]

int((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/6/f*(a*(sin(f*x+e)+1))^(1/2)*a/(2*sin(f*x+e)+cos(f*x+e)^2-2)/(-c*(sin(f*x+e)-1))^(1/2)/c^3*(sin(f*x+e)*cos(f
*x+e)-3*cos(f*x+e)-7*tan(f*x+e)+3*sec(f*x+e))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.15 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {{\left (3 \, a \sin \left (f x + e\right ) + a\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{6 \, {\left (3 \, c^{4} f \cos \left (f x + e\right )^{3} - 4 \, c^{4} f \cos \left (f x + e\right ) - {\left (c^{4} f \cos \left (f x + e\right )^{3} - 4 \, c^{4} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

-1/6*(3*a*sin(f*x + e) + a)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(3*c^4*f*cos(f*x + e)^3 - 4*c^4
*f*cos(f*x + e) - (c^4*f*cos(f*x + e)^3 - 4*c^4*f*cos(f*x + e))*sin(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)/(-c*sin(f*x + e) + c)^(7/2), x)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.06 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {{\left (3 \, a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a}}{24 \, c^{4} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6}} \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

1/24*(3*a*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 - 2*a*sqrt(c)*sgn(cos(-
1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(a)/(c^4*f*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^
6)

Mupad [B] (verification not implemented)

Time = 10.66 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.41 \[ \int \frac {(3+3 \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {a\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}+3\,a\,\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}}{\frac {9\,c^4\,f\,\cos \left (3\,e+3\,f\,x\right )}{2}+\frac {21\,c^4\,f\,\sin \left (2\,e+2\,f\,x\right )}{2}-\frac {3\,c^4\,f\,\sin \left (4\,e+4\,f\,x\right )}{4}-\frac {21\,c^4\,f\,\cos \left (e+f\,x\right )}{2}} \]

[In]

int((a + a*sin(e + f*x))^(3/2)/(c - c*sin(e + f*x))^(7/2),x)

[Out]

-(a*(a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(1/2) + 3*a*sin(e + f*x)*(a + a*sin(e + f*x))^(1/2)*(c - c
*sin(e + f*x))^(1/2))/((9*c^4*f*cos(3*e + 3*f*x))/2 + (21*c^4*f*sin(2*e + 2*f*x))/2 - (3*c^4*f*sin(4*e + 4*f*x
))/4 - (21*c^4*f*cos(e + f*x))/2)